If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6x^2=18x
We move all terms to the left:
-6x^2-(18x)=0
a = -6; b = -18; c = 0;
Δ = b2-4ac
Δ = -182-4·(-6)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18}{2*-6}=\frac{0}{-12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18}{2*-6}=\frac{36}{-12} =-3 $
| 2x–5=8+13 | | 5(5j+8=65 | | 2(2x-7=4 | | x²+0,68x-0,94625=0 | | X+5x²=0 | | 4(3j-5)=16 | | 2(2w-6)=-8 | | 166=86-x | | 5(3a-6)=-8 | | 6(2c-6)=72 | | 6(2c-6=72 | | 2(6n-1)=142 | | 3(6t-1)=51 | | -4x=6-10 | | 0=-x^2+5.5x+3 | | y-5=3(3-2y) | | 2x²+5+2=0 | | 3x2-507=0 | | (Q-6)x2=18 | | 36-x=175 | | (Q-6)x7=70 | | (U+1)x9=45 | | (Q-3)x2=14 | | 2+6x=13+x | | 42x^2-126x-100=0 | | 42x^2-126x+100=0 | | 5x-24=38 | | 17^x=1/17 | | 10x³+5x²-2x+1-6x³=2x²+4x³+1 | | 5x-3-2x=6 | | 3y^2-4y-240=0 | | 2(x-5)=3(2x-14) |